Abstract
BackgroundSevere pediatric slow transit constipation (STC) is commonly due to intrinsic colonic neuro-muscular disease. We sought to correlate neuromus-cular histological phenotypes in pediatric STC with colonic manometric phenotypes using high-resolution manometry (HRM). We tested the hypothesis that failure of motor quiescence (FQ) between bisacodyl-induced high amplitude propagating sequences (HAPSs) might predict neuromuscular pathology.
MethodsEighteen children (10 males, median age: 7.5 years) with refractory STC underwent stationary colonic HRM before segmental colonic resection. Six age-matched constipated children with normal colonic transit served as controls. Colonic resection specimens underwent histopathological analysis. Conventional manometric parameters and area under the curve (AUC) during a 1-min period following bisacodyl-induced HAPSs [PBAUC1], as measure of FQ, were calculated.